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Abstract

We present Spectre Wallet, a cryptographically hardened, metadata-minimising wallet ar-
chitecture that leverages the Nym mixnet, stateless client design, and an intent-based agent
interface. Unlike mainstream non-custodial wallets that leak TP addresses, behavioural finger-
prints and RPC endpoints, Spectre provides provable traffic unlinkability and formal anonymity
guarantees. We model a global passive adversary with partial network control, derive upper
bounds on deanonymisation probability, and measure performance overhead. Spectre reduces
adversary advantage from = 1 to < 1/64 in a 10 % compromised-node scenario, at a median la-
tency overhead of 320 ms. We also introduce a privacy-preserving dApp gateway, post-quantum
signature support, and a security analysis aligned with Saltzer’s principles.

1 Introduction

Operational wallets such as MetaMask or Phantom correlate wallet addresses with IP data via de-
fault RPC back-ends and embed analytics that fingerprint devices [6]. Emerging use-cases—autonomous
trading agents, DAO executors, whistle-blower payouts—require wallets that leak nothing. Spectre
reconceptualises the wallet as privacy infrastructure.

Contributions.

1. Formal threat model and entropy bound on metadata-driven deanonymisation.

2. Stateless client whose full traffic surface is tunnelled through Nym’s mixnet.

3. Privacy-preserving dApp gateway using ephemeral CREATE2 wallets and optional zk-login.
4. Security proofs bounding adversary advantage d(p) for compromised-node fraction p.

5. Prototype evaluation on iOS and Linux.



2 Background and Related Work

Mixnets. Sphinx [1] and Loopix [2] underpin low-latency anonymity; Nym adds incentives. Ac-
count abstraction. ERC-4337 [7]| enables smart wallets but not metadata privacy. Spectre fuses
mixnet routing and stateless design—an open gap.

3 Threat Model

Adversary A controls a fraction p € (0,1) of mix nodes and passively monitors all other traffic.
Deanonymisation probability:

A(M) =Pr[A=u| M], (1)

where M is the metadata vector. Target bound:

AM) < U +6(0),  8(p) <27° (p < 0.10). (2)

4 System Design

4.1 Network Layer

Packets use Sphinx with exponential delay mean 1/). Aggregate latency:
T ~ Erlang(n, \). (3)

Default n=3, A=2s""! gives median T5y = 0.33 s.

4.2 Stateless Client

No localStorage, IndexedDB, or telemetry; keys stored in secure enclave; crash logs are volatile.

4.3 RPC Layer

RPC calls are batched (200 ms) and routed via Nym exits to self-hosted nodes.

4.4 Intent Interface

{
"jsonrpc": "2.0",
"method": "spectre_intent",
"params": { "goal": "swap",
"constraints": { "slippage": "<0.3%" } }
+



4.5 dApp Gateway
Per-dApp wallet wy derived via CREATE2; unlinkability metric:

U(D) =1 — max Pr(wa, = wy; | A). (4)

d;#d;

4.6 Cryptographic Stack

Primitive Purpose Status
ECDSA-secp256kl  Legacy chains

Ed25519 L2 quick-sign

Falcon-1024 Post-quantum  Prototype
Dilithium-3 Post-quantum  Prototype

Groth16 / PLONK ZK intents

Table 1: Supported primitives.

5 Security Analysis

Entropy anonymity metric [2]:

H(U | V) ==Y Pr(u|V)logy Pr(u]| V). 6))
uelU

Simulation (10° runs) yields H(U | V') > log, |U| — 5.9 bits for p = 0.10.

6 Performance Evaluation

Metric MetaMask Spectre Overhead
RPC RTT (ms) 90£12 410438 4.6x
Swap latency (s) 1.20 152 1.3x
Bandwidth (MBh~!) 4.3 6.7 1.5x

Table 2: Prototype results.

7 Conclusion

Spectre demonstrates that a wallet can minimise metadata without crippling usability. Mixnet
routing, stateless design, and agent-centric APIs reduce deanonymisation probability below 1.5 %.
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